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Reasons for Another Kind of Probability
•   So far, we’ve been (mostly) using the notion that probability is 
    the limit of a fraction of trials that pass a certain criterion to total trials.

•   Systematic uncertainties involve many harder issues.  Experimentalists
     spend much of their time evaluating and reducing the effects of 
     systematic uncertainty.

•   We also want more from our interpretations -- we want to be able to make
    decisions about what to do next.

•  Which HEP project to fund next?
•  Which theories to work on?
•  Which analysis topics within an experiment are likely
   to be fruitful?

These are all different kinds of bets that we are forced to
make as scientists.  They are fraught with uncertainty,
subjectivity, and prejudice.

Non-scientists confront uncertainty and the need to make decisions too!
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Bayes’ Theorem
Law of Joint Probability:

Events A and B interpreted to mean “data” and “hypothesis”

{x} = set of observations
{ν} = set of model parameters

A frequentist would say: Models have no “probability”.  One model’s true,
others are false.  We just can’t  tell which ones (maybe the space of considered
models does not contain a true one).
Better language:  

describes our belief in the different models parameterized by {ν}

! 

p({"} | data) =
L(data |{"})# (")

L(data |{ $ " })# ({ $ " })d{ $ " }%

! 

p({"} | data)
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Bayes’ Theorem
is called the “posterior probability” of
the model parameters

is called the “prior density” of the model parameters

The Bayesian approach tells us how our existing knowledge before we do the 
experiment is “updated” by having run the experiment.

This is a natural way to aggregate knowledge -- each experiment updates
what we know from prior experiments (or subjective prejudice or some
things which are obviously true, like physical region bounds).

Be sure not to aggregate the same information multiple times!  (groupthink)

We make decisions and bets based on all of our knowledge and prejudices

“Every animal, even a frequentist statistician, is an informal
Bayesian.”   See R. Cousins, “Why Isn’t Every Physicist a Bayesian”,
Am. J. P., Volume 63, Issue 5, pp. 398-410

! 

p({"} | data)

! 

" ({#})
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How I remember Bayes’s Theorem

Posterior “PDF”
(“Credibility”)

“Likelihood Function”
(“Bayesian Update”)

“Prior belief
distribution”

Normalize this so that

for the observed data
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Bayesian Application to HEP Data: Setting
Limits on a new process with systematic uncertainties

! 

L(r,") = P
Poiss
(data | r,")

bins

#
channels

#

Where r is an overall signal scale factor, and θ represents
all nuisance parameters.

! 

P
Poiss
(data | r,") =
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i
(") + b

i
("))ni e#(rsi (" )+bi (" ))

n
i
!

where ni is observed in each bin i, si is the predicted
signal for a fiducial model (SM), and bi is the predicted
background.  

Dependence of si and bi on θ includes rate, shape,
and bin-by-bin independent uncertainties in a realistic example.
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Bayesian Limits
Including uncertainties on nuisance parameters θ

! 

" L (data | r) = L(data | r,#)$ (#)d#%
where π(θ) encodes our prior belief in the values of
the uncertain parameters.  Usually Gaussian centered on
the best estimate and with a width given by the systematic.
The integral is high-dimensional.  Markov Chain MC integration is
quite useful!
Useful for a variety of results:

! 

0.95 = " L (data | r)# (r)dr

0

rlim

$
Typically π(r) is constant
Other options possible.
Sensitivity to priors a
concern. 

Limits:

Measure r:

! 

0.68 = " L (data | r)# (r)dr
rlow

rhigh

$

! 

r = r
max"(rmax "rlow )

+(rhigh"rmax )

Usually:  shortest interval containing 68% of the posterior
  (other choices possible).  Use the word “credibility” in place of “confidence”
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Be Explicit About Introduction of Priors
•  Typical example of a Bayesian calculation of a 95% CL upper
    limit
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Sensitivity of upper limit to Even a “flat” Prior

L. Demortier, Feb. 4, 2005
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Systematic Uncertainties
Encoded as priors on the nuisance parameters π({θ}).

Can be quite contentious -- injection of theory
  uncertainties and results from other experiments --
   how much do we trust them?

Do not inject the same information twice.

Some uncertainties have statistical interpretations --
can be included in L as additional data.  Others are
purely about belief.  Theory errors often do not have
statistical interpretations.
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Aside:  Uncertainty on our Cut Values?  (ans: no)

•  Systematic uncertainty -- covers unknown
   differences between model predictions and the “truth”

•  We know what values we set our cuts to.

•  We aren’t sure the distributions we’re cutting on are properly
   modeled.

•  Try to constrain modeling with control samples 
  (extrapolation assumptions)

•  Estimating systematic errors by “varying cuts” isn’t optimal
 -- try to understand bounds of mismodeling instead.
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Integrating over Systematic Uncertainties Helps
Constrain their Values with Data

! 

" L (data | r) = L(data | r,#)$ (#)d#%

Nuisance parameters: θ
Parameter of Interest: r

Example:  suppose we have
a background rate prediction
that’s 50% (fractionally) uncertain
-- goes into π(θ).  But only a 
narrow range of background rates
contributes significantly to the
integral.  The kernel falls to zero rapidly
outside of that range.

Can make a posterior probability distribution for the background too --
narrow belief distribution.
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Coping with Systematic Uncertainty

•  “Profile:”
•  Maximize L over possible values of nuisance parameters
    include prior belief densities as part of the χ2 function
    (usually Gaussian constraints)

•  “Marginalize:”
•  Integrate L over possible values of nuisance parameters
   (weighted by their prior belief functions -- Gaussian,
   gamma, others...)
•  Consistent Bayesian interpretation of uncertainty on nuisance
   parameters

•  Aside:  MC “statistical” uncertainties are systematic uncertainties 
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Example of a Pitfall in Fitting Models

•  Fitting a polynomial with too high a degree
•  Can extrapolations be trusted?

CEM16_TRK8

Trigger x-section
extrapolation vs.
luminosity

Lum E30
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Even Bayesians have to be a little Frequentist
•  A hard-core Bayesian would say that the results of an
  experiment should depend only on the data that are observed,
  and not on other possible data that were not observed.

  Also known as the “likelihood principle”

•  But we still want the sensitivity estimated!  An experiment
  can get a strong upper limit not because it was well designed,
  but because it was lucky.

   How to optimize an analysis before data are observed?

  So -- run Monte Carlo simulated experiments and compute
  a Frequentist distribution of possible limits.  Take the median--
  metric independent and less pulled by tails.

  But even Bayesian/Frequentists have to be Bayesian:
  use the Prior-Predictive method -- vary the systematics on eachc
  pseudoexperiment in calculating expected limits.  To omit
  this step ignores an important part of their effects.
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Bayesian Example:  CDF Higgs Search at mH=160 GeV
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Observed
Limit

5% of integral
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An Example Where Usual Bayesian Software Doesn’t Work

•  Typical Bayesian code assumes fixed background, signal shapes (with 
   systematics) -- scale signal with a scale factor and set the limit on the  scale factor
•  But what if the kinematics of the signal depend on the cross section?  Example -- 
   MSSM Higgs boson decay width scales with tan2β, as does the production cross
    section.
•  Solution -- do a 2D scan and a two-hypothesis test at each mA,tanβ point
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Priors in Non-Cross-Section Parameters

Example: take a flat prior in mH;
can we discover the Higgs boson
by process of elimination?
(assumes exactly one Higgs boson 
exists, and other SM assumptions)

Example:  Flat prior in
log(tanβ) -- even with no
sensitivity, can set non-trivial
limits..
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Bayesian Discovery?
Bayes Factor

! 

B = " L (data | rmax ) / " L (data | r = 0)

Similar definition to the profile likelihood ratio, but instead of maximizing
L, it is averaged over nuisance parameters in the numerator and
denominator.

Similar criteria for evidence, discovery as profile likelihood.

Physicists would like to check the false discovery rate,
and then we’re back to p-values.

But -- odd behavior of B compared with p-value for even a simple case

J. Heinrich, CDF 9678
http://newton.hep.upenn.edu/~heinrich/bfexample.pdf
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Tevatron Higgs Combination Cross-Checked Two Ways

Very similar results --
•  Comparable exclusion regions
•  Same pattern of excess/deficit 
   relative to expectation

n.b.  Using CLs+b limits instead of
CLs or Bayesian limits would extend the
bottom of the  yellow band to zero in the 
above plot, and the observed limit
would fluctuate accordingly.  We’d have
to explain the 5% of mH values we randomly
excluded without sufficient sensitivity.

r lim
 =
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Measurement and Discovery are Very Different
Buzzwords:
•  Measurement = “Point Estimation”
•  Discovery = “Hypothesis Testing”

You can have a discovery and a poor measurement!
Example:  Expected b=2x10-7 events, expected signal=1
  event, observe 1 event, no systematics.

   p-value ~2x10-7 is a discovery!  (hard to explain that event
   with just the background model).  But have  ±100%
   uncertainty on the measured cross section!

   In a one-bin search, all test statistics are equivalent.  But 
   add in a second bin, and the measured cross section becomes
  a poorer test statistic than the ratio of profile likelihoods.

In all practicality, discriminant distributions have a wide
spectrum of s/b, even in the same histogram.  But some good
bins with b<1 event
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Advantages and Disadvantages of Bayesian Inference

•   Advantages:
•   Allows input of a priori knowledge:

•   positive cross-sections
•   positive masses

•  Gives you “reasonable” confidence intervals which don’t
    conflict with a priori knowledge
•  Easy to produce cross-section limits
•  Depends only on observed data and not other possible data
•  No other way to treat uncertainty in model-derived parameters

•  Disadvantages:
•  Allows input of a priori knowledge (AKA “prejudice”)
    (be sure not to put it in twice...)
•  Results are metric-dependent (limit on cross section or
   coupling constant? -- square it to get cross section).
•  Coverage not guaranteed
•  Arbitrary edges of credibility interval (see freq. explanation)
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Outliers
•  Sometimes they’re obvious, often they are not.
•  Best to make sure that the uncertainties on all points honestly
   include all known effects.  Understand them!

L. Ristori,
Instantaneous
Luminosity vs. time
(a store in 2005)

hours

Lum E30
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Summary
Statistics, like physics, is a lot of fun!

It’s central to our job as scientists, and about how human
knowledge is obtained from observation.

Lots of ways to address the same problems.

Many questions do not have a single answer.  Room
  for uncertainty.   Probability and uncertainty are different
  but related.

Think about how your final result will be extracted from the
data before you design your experiment/analysis -- keep
thinking about it as you improve and optimize it.
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Thanks

To You!

To the organizers, Isabel, Bernd, Rob, ...
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Extra Material
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Bayesian Upper Limit Calculation

data = n
b = background rate
s = signal rate (= cross section when luminosity=1)

Multiply by a flat prior π(s) = 1 and find the limit by integrating:

Not too tricky; easy to explain.   
•  But where did π(s) come from?
•  What to do about systematic uncertainty on signal and background?
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Frequentist Analysis of Significance of Data

•  Most experiments yield outcomes with measure ~0

•  A better question:  Assuming the null hypothesis is true,
       what are the chances of observing something as much
       like the test hypothesis as we did (or more)?
        used to reject the null hypothesis if small

•  Another question:  If test hypothesis is true, what are the chances
        that we’d see something as much like the null hypothesis
        as we did (or more)?
         used to reject the test hypothesis if small

It is possible to reject both hypotheses!  (but not with C+F or
Bayesian techniques).
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Frequentist Interpretation of Data
•  Relies on an abstraction -- an infinite ensemble of repetitions of
    the experiment.  Can speak of probabilities as fractions of
    experiments.

• Constructed to give proper coverage:

    95% CL intervals contain the true value 95% of the time, and
    do not contain the true value 5% of the time, if the experiment
    is repeated.

•  Two kinds of errors:
•  Accepting test hypothesis if it is false
•  Excluding test hypothesis if it is true

•  Two kinds of success
•  Accepting test hypothsis if it is true
•  Excluding test hypothesis if it is false

Difference between
“power” and
“coverage”



Statistics/Thomas R. Junk/TSI July 2009 30

Undesirable Behavior of Limit-Setting Procedures
•  Empty confidence intervals:  we know with 100% certainty
   that an empty confidence interval doesn’t contain the true 
   value, even though the technique produces correct 95% coverage
   in an ensemble of possible experiments.  Odd situation when
   we know we’re in the “unlucky” 5%.

•  Ability of an experiment to exclude a model to which there
   is no sensitivity.
   Classic example:  fewer selected data events than predicted by
   SM background.  Can sometimes rule out SM b.g. hypothesis
   at 95% CL and also any signal+background hypothesis,
   regardless of how small the signal is.

Annoying, but not actually flaws of a technique
•  Experiments with less sensitivity (lower s, or higher b, or bigger
   errors) can set more stringent limits if they are lucky than
   more sensitive experiments
• Increasing systematic errors on b can result in more stringent
   limits (happens if an excess is observed in data).
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Solution to Annoying Problems -- Expected Limits

•  Sensitivity ought to be quoted as the median expected limit
   (or median discovery probability) or median expected error
   bar in a large ensemble of possible experiments, not the observed
   one.  Called “a priori limits” in CDF Run 1 parlance.

•  Systematic errors will always weaken the expected limits
  (observed limits may do anything!)

•  Best way to compare which analysis is best among several
   choices -- optimize cuts based on expected limits is optimal

Approximations to expected limit:  
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Systematic Uncertainties in Fequentist Approaches
•  Can construct multi-dimensional Confidence intervals,
  with each nuisance parameter (=source of uncertainty)
  constrained by some measurement.

•  Not all nuisance paramters can be constrained this way --
  some are theoretical guesses with belief distributions instead
  of pure statistical experimental errors.

•  Systematic uncertainty is uncertainty in the predictions of
  our model: e.g., p(data|Standard Model) is not completely well
  determined due to nuisance parameters

•  One approach -- “ensemble of ensembles” -- include in the
 ensemble variations of the nuisance parameters.

(even Frequentists have to be a little Bayesian sometimes)
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Individual Candidates Can Make a Big Difference

if s/b is high enough
near each one.

Fine mass grid --
smooth interpolation
of predictions --
some analysis
switchovers at
different mH for
optimization purposes

At LEP -- can follow individual candidates’ interpretations
   as functions of test mass
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A Pitfall -- Not Enough MC (data) To Make
Adequate Predictions

Cousins, Tucker and 
Linnemann tell us prior 
predictive p-values 
undercover with 0±0 
events are predicted 
in a control sample.

CTL Propose a flat prior in
true rate, use joint LF
in control and signal
samples.  Problem is, the
mean expected event rate
in the control sample is
nobs+1 in control sample.
Fine binning → bias in
background prediction.

Overcovers for discovery,
undercovers for limits?

An Extreme Example (names removed)


